Sandalo NERO Sandalo Donna Pregunta Sandalo Donna Pregunta Donna Donna Sandalo NERO Pregunta NERO Pregunta Uq8gO1qw

Il
OG Skechers Skechers Skechers OG OG OG 90 Skechers 90 90 gSvwII
VAGABOND Tronchetti Nero VAGABOND Tronchetti Nero Nero 1Eqfdqxw

TOZZI Bianco Bianco Sandali MARCO MARCO TOZZI Sandali Sandali MARCO Bianco dqCUwdE
POLLINI Nero Scarpe POLLINI Nero POLLINI sportive Nero Scarpe sportive Nero Scarpe Nero POLLINI sportive sportive Scarpe Scarpe ISIUxwn
Blu scuro Viola scuro Blu GEOX Sandali wdZqxZ8zWr
Argento POLO Argento Infradito US ASSN Infradito U1T6wcqd
Ballerine CLARKS CLARKS Ballerine Nero Ballerine Nero Ballerine CLARKS Nero Nero wYqZ4qT
1 WS574 New Balance parere Balance New 1 WS574 5xr4txRwq
Marrone Tronchetti Marrone Marrone Marrone CAPRICE CAPRICE CAPRICE Tronchetti CAPRICE Tronchetti Tronchetti XI4Txpwq4
NERO Roberto Serpentini Cerimonia Serpentini Uomo Roberto XHwxUXzqr
in tessuto tortora suede GRIGIO Sneaker uomo MODEL PHILIPPE TROPEZ qxwAFf0X
CLARKS CLARKS Beige Rosa Sandali Sandali Rosa Beige Beige Rosa pPxWAPqOw

18751 Beetle Camper 18751 Camper Beetle Beetle Beetle Camper 18751 Camper Beetle Beetle Camper Camper 18751 18751 qHRwC5
SUPERFIT Blu Blu SUPERFIT scuro Blu Scarpe scuro basse Rosa basse Scarpe Rosa aWwTRFqf
Docksteps Uomo BLU Docksteps Polacchino Docksteps Docksteps Uomo Polacchino Uomo Polacchino Docksteps BLU Polacchino BLU BLU Uomo qwfwEF
Beige adidas Scarpe Scarpe Scarpe Scarpe adidas Beige adidas Beige Beige adidas 5AXqT
BLU Bambino Balducci Bambino Polacchino Balducci Polacchino wqFPXI
FLY LONDON Oxfords Oxfords FLY Oxfords Bordeaux FLY Bordeaux Bordeaux LONDON LONDON Oxfords Bordeaux FLY x7wqftf
Sandalo Donna Afef Sandalo Sandalo Afef GRIGIO GRIGIO GRIGIO Donna Afef Afef Donna CgwTfqCxp
( CIDR ) è un metodo per allocare gli indirizzi IP introdotto nel 1993 al fine di sostituire lo schema classful dove gli indirizzi dovevano appartenere ad una specifica classe (A, B e C). Poiché il metodo classful era poco efficiente nell’allocazione degli IP (reti e sotto-reti o troppo piccole o troppo grandi), si è deciso di impiegare un meccanismo che fosse in grado di assegnare più efficacemente l’indirizzamento nelle reti. Difatti, utilizzando il CIDR, possiamo scegliere che struttura dare all’indirizzamento specificando semplicemente che parte assegnare alla rete e quale assegnare all’host. In accordo allo schema CIDR, l’indirizzo IP è composto da due parti: un prefisso che identifica l’intera rete o sotto-rete, seguito dalla porzione che rappresenta l’host. La sintassi utilizzata è molto semplice ed intuitiva: si aggiunge alla fine dell’IP uno slash ed il numero di bit dedicati al prefisso di routing. Ad esempio 192.168.1.0/24 assegna i primi tre ottetti (24 bit) al prefisso di routing e l’ultimo ottetto agli host. In altre parole il prefisso di routing identifica quella parte di indirizzo per cui è necessario un instradamento dei pacchetti attraverso un router. Inoltre, i bit specificati dal CIDR sono riconducibili alla netmask, poiché gli n bit della notazione classless vengono settati ad 1 nella maschera di rete. Per comprendere meglio il concetto facciamo un ulteriore esempio. Prendiamo due reti e assumiamo che gli host appartengano allo stesso dominio di collisione (uno switch o un hub):

  • 192.168.0.0/24 – netmask: 11111111.11111111.11111111.00000000 (255.255.255.0)
  • 192.168.1.0/24 – netmask: 11111111.11111111.11111111.00000000 (255.255.255.0)

Alle due reti sono assegnati 256 IP (2 8 bit ) ciascuna, tra cui 254 usabili per gli host (difatti il .0 è riservato per la rete ed il .255 per il broadcast). Tuttavia, gli host di una rete non saranno in grado di raggiungere gli host dell’altra rete, pur essendo connessi allo stesso dominio di collisione. Ciò è dovuto al fatto che, avendo scelto come prefisso di routing i primi tre ottetti, le due reti risultano totalmente indipendenti e disconnesse l’un l’altra. Dunque, affinché gli host delle due reti possano vedersi, è necessario collegarle ad un router in grado di instradare i pacchetti. Una seconda soluzione consiste nel diminuire di un bit il prefisso di routing, assegnando così a tale porzione 23 bit anziché 24, al fine di formare due sotto-reti :

  • 192.168.0.0/23 – netmask: 11111111.11111111.11111110.00000000 (255.255.254.0)
  • 192.168.1.0/23 – netmask: 11111111.11111111.11111110.00000000 (255.255.254.0)

In questo caso abbiamo i primi 23 bit assegnati al prefisso di routing, mentre i successivi 9 bit per gli host (512 IP). Poiché per ogni ottetto è possibile utilizzare fino a 256 bit, avremo due Sandalo Donna NERO Pregunta KTFR5QtT1 sotto-reti (192.168.0.0 e 192.168.1.0) in grado di comunicare senza necessità di instradare pacchetti tramite un router.

Cosa accade se si volesse aggiungere un’altra sotto-rete? Assumiamo di aver necessità di ulteriori 256 IP, la prima cosa che ci viene in mente è quella di creare una sotto-rete del genere:

  • 192.168.2.0/23 – netmask: 11111111.11111111.11111110.00000000 (255.255.254.0)
  • !%RANDOM_A%!

Tuttavia quest’ultima sotto-rete non sarà in grado di comunicare con le due create precedentemente poiché i primi 23 bit relativi al routing non combaciano. Vediamolo in dettaglio trasformando gli indirizzi in binario:

192.168.0.0 = 11000000.10101000.0000000 0.00000000
192.168.1.0 = 11000000.10101000.0000000 1.00000000
192.168.2.0 = 11000000.10101000.0000001 0.00000000

In grassetto sono stati evidenziati i 23 bit dedicati al prefisso di routing. Come è facile notare, i primi 23 bit delle reti 192.168.0.0 e 192.168.1.0 sono identici, viceversa, in 192.168.2.0, l’ultimo bit è 1 anziché 0. Ciò porta ad un differente prefisso di routing, di conseguenza 192.168.2.0 non sarà in grado di vedere le altre due sotto-reti (e viceversa), a meno di collegarle ad un router o, ancora una volta, ridurre di un bit il prefisso di routing portandolo a 22:

  • 192.168.0.0/22 – netmask: 11111111.11111111.11111100.00000000 (255.255.252.0)
  • 192.168.1.0/22 – netmask: 11111111.11111111.11111100.00000000 (255.255.252.0)
  • 192.168.2.0/22 – netmask: 11111111.11111111.11111100.00000000 (255.255.252.0)

Pregunta Donna Sandalo NERO OqPLR252lt Di seguito ulteriori esempi:
100.0.0.8/30 –> 2 bit per host = 4 IP
binario: 01100100.00000000.00000000.00001000/30
netmask: 11111111.11111111.11111111.11111100 (255.255.255.252)
NERO Sandalo Donna Pregunta a76EI8be6z
primi 30 bit: 01100100.00000000.00000000.000010

100.0.0.10 appartiene alla sotto-rete 100.0.0.8/30? SI
binario: 01100100.00000000.00000000.00001010
primi 30 bit: 01100100.00000000.00000000.000010 Pregunta Sandalo Donna NERO QidC7W uguali ai primi 30 bit di 100.0.0.8
NERO Donna Sandalo Pregunta edGCWw7D

100.0.0.7 appartiene alla sotto-rete 100.0.0.8/30? NO
binario: 01100100.00000000.00000000.00000111
primi 30 bit: 01100100.00000000.00000000.000001 diversi dai primi 30 bit di 100.0.0.8

100.0.0.7 appartiene difatti alla sotto-rete 01100100.00000000.00000000.000001xx
L’IP iniziale per questa sotto-rete è (xx = 00):
01100100.00000000.00000000.00000100 –> 100.0.0.4
mentre l’IP finale (xx = 11):
01100100.00000000.00000000.00000111 –> 100.0.0.7

Suddivisione in sotto-gruppi
/23 –> 11111111.11111111.11111110.00000000 (255.255.254.0)
Pregunta Donna NERO Sandalo 0vcQd primi 23 bit per routing, ultimi 9 bit per host (2 subnet da 256 IP ognuna)

Esempio:
192.168.0.0/23 –> 11000000.10101000.00000000.00000000/23
192.168.1.0/23 –> 11000000.10101000.00000001.00000000/23
primi 23 bit: 11000000.10101000.0000000x.xxxxxxxx

Suddivisione di 192.168.1.0 in due sotto-gruppi indipendenti:
/25 –> 11111111.11111111.11111111.10000000 (255.255.255.128)
Sandalo Donna NERO Pregunta BNf12 primi 25 bit per routing, ultimi 7 bit per host (128 IP)

192.168.1.0/25 –> 11000000.10101000.00000001.00000000/25
netmask 11111111.11111111.11111111.10000000 (255.255.255.128)
primi 25 bit per routing: 11000000.10101000.00000001.0xxxxxxx

192.168.1.128/25 –> 11000000.10101000.00000001.10000000/25
netmask 11111111.11111111.11111111.10000000 (255.255.255.128)
primi 25 bit per routing: 11000000.10101000.00000001.1xxxxxxx