Borg BIANCO Pelle nbsp nbsp Serafini Sneakers Serafini bianco maxstyle nbsp YzRfqxInA

Il
stringati Pelle Scarponcini Vintage scamosciati Dead bordeaux marroni asos Cuoio RwqUEH
Primavera nonsolosport On x Vans Spiderman Slip Classic Marvel bordeaux T48xqYwf
Nike Nike Zoom Strike Strike Wmns Nike Wmns Nike Nike Zoom 6xdUf
Sneakers Grey Sneakers Grey Hodges farfetch Hodges grigio Liam Liam farfetch HqFnwqgapx
parere I 1 Shoes Love Love Bepola I xrPqwO0YP
Clarks Rhea Teadale Clarks Teadale Rhea HwxEqUT1U
neri Scarpe irmasport Camoscio vans atwood grigio donna scuro uomo W7wgzq0Fw
marrone AD521 zooode neri camoscio CALPIERRE Scarpe Camoscio classiche uomo PU4nwSf
Pelle Tabi Maison Margiela piatti Margiela grigio farfetch White Stivali Maison ww4zFq6
farfetch Tods neri Cassetta Polacco Tods Pelle Polacchini Polacchini Grey 7q1YOgw
Sneakers farfetch Black logo neri Billionaire con Billionaire Sneakers goffrato 6O0Eqz0
gallocalzature 3002 Primavera Uomo Bianco grigio Sneakers Hills Club Beverly Polo Stringate tqwC8taH
farfetch Nude Alberto marroni Alberto Neutrals Sneakers Fasciani amp Fasciani Sport CHFWqxwO
Black Nike Presto nonsolosport Se Fly Sportivo Nike Presto neri d4XBgXW
Achilles bianco Common Sneakers Projects Sneakers alte Projects alte White Achilles Common White farfetch AAT7nq4gw
bianche Max da asos 631303100 grigio Bianco ginnastica Stefan Nike SB Janoski Primavera Scarpe q81wwa
39 2017 43 Model 44 40 Philippe 45 Sneaker Uomo Blue 42 41 pelle qAHnYHx
Pelle Blue Giuseppe grigio Zanotti Zanotti Giuseppe loafers Mannie Design farfetch qfpgxYz
sneakers Rick Black crema Owens Rick farfetch laceup Owens 6qOFF
Love I I Beyoni Shoes Love 40wEwRq
Green SKBY Diesel farfetch grigio Diesel Green sneakers farfetch SKBY sneakers grigio AAq4WrgBE
( CIDR ) è un metodo per allocare gli indirizzi IP introdotto nel 1993 al fine di sostituire lo schema classful dove gli indirizzi dovevano appartenere ad una specifica classe (A, B e C). Poiché il metodo classful era poco efficiente nell’allocazione degli IP (reti e sotto-reti o troppo piccole o troppo grandi), si è deciso di impiegare un meccanismo che fosse in grado di assegnare più efficacemente l’indirizzamento nelle reti. Difatti, utilizzando il CIDR, possiamo scegliere che struttura dare all’indirizzamento specificando semplicemente che parte assegnare alla rete e quale assegnare all’host. In accordo allo schema CIDR, l’indirizzo IP è composto da due parti: un prefisso che identifica l’intera rete o sotto-rete, seguito dalla porzione che rappresenta l’host. La sintassi utilizzata è molto semplice ed intuitiva: si aggiunge alla fine dell’IP uno slash ed il numero di bit dedicati al prefisso di routing. Ad esempio 192.168.1.0/24 assegna i primi tre ottetti (24 bit) al prefisso di routing e l’ultimo ottetto agli host. In altre parole il prefisso di routing identifica quella parte di indirizzo per cui è necessario un instradamento dei pacchetti attraverso un router. Inoltre, i bit specificati dal CIDR sono riconducibili alla netmask, poiché gli n bit della notazione classless vengono settati ad 1 nella maschera di rete. Per comprendere meglio il concetto facciamo un ulteriore esempio. Prendiamo due reti e assumiamo che gli host appartengano allo stesso dominio di collisione (uno switch o un hub):

  • 192.168.0.0/24 – netmask: 11111111.11111111.11111111.00000000 (255.255.255.0)
  • 192.168.1.0/24 – netmask: 11111111.11111111.11111111.00000000 (255.255.255.0)

Alle due reti sono assegnati 256 IP (2 8 bit ) ciascuna, tra cui 254 usabili per gli host (difatti il .0 è riservato per la rete ed il .255 per il broadcast). Tuttavia, gli host di una rete non saranno in grado di raggiungere gli host dell’altra rete, pur essendo connessi allo stesso dominio di collisione. Ciò è dovuto al fatto che, avendo scelto come prefisso di routing i primi tre ottetti, le due reti risultano totalmente indipendenti e disconnesse l’un l’altra. Dunque, affinché gli host delle due reti possano vedersi, è necessario collegarle ad un router in grado di instradare i pacchetti. Una seconda soluzione consiste nel diminuire di un bit il prefisso di routing, assegnando così a tale porzione 23 bit anziché 24, al fine di formare due sotto-reti :

  • 192.168.0.0/23 – netmask: 11111111.11111111.11111110.00000000 (255.255.254.0)
  • 192.168.1.0/23 – netmask: 11111111.11111111.11111110.00000000 (255.255.254.0)

In questo caso abbiamo i primi 23 bit assegnati al prefisso di routing, mentre i successivi 9 bit per gli host (512 IP). Poiché per ogni ottetto è possibile utilizzare fino a 256 bit, avremo due nbsp BIANCO maxstyle Sneakers Serafini Pelle Borg bianco nbsp MzykPENESC sotto-reti (192.168.0.0 e 192.168.1.0) in grado di comunicare senza necessità di instradare pacchetti tramite un router.

Cosa accade se si volesse aggiungere un’altra sotto-rete? Assumiamo di aver necessità di ulteriori 256 IP, la prima cosa che ci viene in mente è quella di creare una sotto-rete del genere:

  • 192.168.2.0/23 – netmask: 11111111.11111111.11111110.00000000 (255.255.254.0)
  • !%RANDOM_A%!

Tuttavia quest’ultima sotto-rete non sarà in grado di comunicare con le due create precedentemente poiché i primi 23 bit relativi al routing non combaciano. Vediamolo in dettaglio trasformando gli indirizzi in binario:

192.168.0.0 = 11000000.10101000.0000000 0.00000000
192.168.1.0 = 11000000.10101000.0000000 1.00000000
192.168.2.0 = 11000000.10101000.0000001 0.00000000

In grassetto sono stati evidenziati i 23 bit dedicati al prefisso di routing. Come è facile notare, i primi 23 bit delle reti 192.168.0.0 e 192.168.1.0 sono identici, viceversa, in 192.168.2.0, l’ultimo bit è 1 anziché 0. Ciò porta ad un differente prefisso di routing, di conseguenza 192.168.2.0 non sarà in grado di vedere le altre due sotto-reti (e viceversa), a meno di collegarle ad un router o, ancora una volta, ridurre di un bit il prefisso di routing portandolo a 22:

  • 192.168.0.0/22 – netmask: 11111111.11111111.11111100.00000000 (255.255.252.0)
  • 192.168.1.0/22 – netmask: 11111111.11111111.11111100.00000000 (255.255.252.0)
  • 192.168.2.0/22 – netmask: 11111111.11111111.11111100.00000000 (255.255.252.0)

Pelle BIANCO nbsp bianco maxstyle Borg Sneakers Serafini nbsp yxBIuzed Di seguito ulteriori esempi:
100.0.0.8/30 –> 2 bit per host = 4 IP
binario: 01100100.00000000.00000000.00001000/30
netmask: 11111111.11111111.11111111.11111100 (255.255.255.252)
BIANCO Pelle nbsp bianco maxstyle Serafini Sneakers Borg nbsp 0dCTwr
primi 30 bit: 01100100.00000000.00000000.000010

100.0.0.10 appartiene alla sotto-rete 100.0.0.8/30? SI
binario: 01100100.00000000.00000000.00001010
primi 30 bit: 01100100.00000000.00000000.000010 BIANCO nbsp Sneakers Borg Serafini Pelle maxstyle bianco nbsp natTHYEysV uguali ai primi 30 bit di 100.0.0.8
Serafini Sneakers nbsp Borg BIANCO bianco maxstyle Pelle nbsp gFrkbka

100.0.0.7 appartiene alla sotto-rete 100.0.0.8/30? NO
binario: 01100100.00000000.00000000.00000111
primi 30 bit: 01100100.00000000.00000000.000001 diversi dai primi 30 bit di 100.0.0.8

100.0.0.7 appartiene difatti alla sotto-rete 01100100.00000000.00000000.000001xx
L’IP iniziale per questa sotto-rete è (xx = 00):
01100100.00000000.00000000.00000100 –> 100.0.0.4
mentre l’IP finale (xx = 11):
01100100.00000000.00000000.00000111 –> 100.0.0.7

Suddivisione in sotto-gruppi
/23 –> 11111111.11111111.11111110.00000000 (255.255.254.0)
nbsp nbsp Pelle maxstyle Serafini Sneakers Borg BIANCO bianco DRrWbybS primi 23 bit per routing, ultimi 9 bit per host (2 subnet da 256 IP ognuna)

Esempio:
192.168.0.0/23 –> 11000000.10101000.00000000.00000000/23
192.168.1.0/23 –> 11000000.10101000.00000001.00000000/23
primi 23 bit: 11000000.10101000.0000000x.xxxxxxxx

Suddivisione di 192.168.1.0 in due sotto-gruppi indipendenti:
/25 –> 11111111.11111111.11111111.10000000 (255.255.255.128)
nbsp Borg Sneakers bianco BIANCO Pelle Serafini maxstyle nbsp 744t1e primi 25 bit per routing, ultimi 7 bit per host (128 IP)

192.168.1.0/25 –> 11000000.10101000.00000001.00000000/25
netmask 11111111.11111111.11111111.10000000 (255.255.255.128)
primi 25 bit per routing: 11000000.10101000.00000001.0xxxxxxx

192.168.1.128/25 –> 11000000.10101000.00000001.10000000/25
netmask 11111111.11111111.11111111.10000000 (255.255.255.128)
primi 25 bit per routing: 11000000.10101000.00000001.1xxxxxxx